
www.manaraa.com

University of Iowa University of Iowa 

Iowa Research Online Iowa Research Online 

Theses and Dissertations 

Spring 2019 

Estimation of volumetric optical coherence tomography Estimation of volumetric optical coherence tomography 

measurements from 2D color fundus photographs using machine measurements from 2D color fundus photographs using machine 

learning learning 

Samuel Steven Johnson 
University of Iowa 

Follow this and additional works at: https://ir.uiowa.edu/etd 

 Part of the Electrical and Computer Engineering Commons 

Copyright © 2019 Samuel S Johnson 

This thesis is available at Iowa Research Online: https://ir.uiowa.edu/etd/6775 

Recommended Citation Recommended Citation 
Johnson, Samuel Steven. "Estimation of volumetric optical coherence tomography measurements from 
2D color fundus photographs using machine learning." MS (Master of Science) thesis, University of Iowa, 
2019. 
https://doi.org/10.17077/etd.nwx1-l79t 

Follow this and additional works at: https://ir.uiowa.edu/etd 

 Part of the Electrical and Computer Engineering Commons 

https://ir.uiowa.edu/
https://ir.uiowa.edu/etd
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F6775&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ir.uiowa.edu%2Fetd%2F6775&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.17077/etd.nwx1-l79t
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F6775&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ir.uiowa.edu%2Fetd%2F6775&utm_medium=PDF&utm_campaign=PDFCoverPages


www.manaraa.com

ESTIMATION OF VOLUMETRIC OPTICAL COHERENCE TOMOGRAPHY

MEASUREMENTS FROM 2D COLOR FUNDUS PHOTOGRAPHS USING

MACHINE LEARNING

by

Samuel Steven Johnson

A thesis submitted in partial fulfillment of the
requirements for the Master of Science degree

in Electrical and Computer Engineering
in the Graduate College of

The University of Iowa

May 2019

Thesis Supervisor: Associate Professor Mona K. Garvin



www.manaraa.com

Copyright by

SAMUEL STEVEN JOHNSON

2019

All Rights Reserved



www.manaraa.com

ACKNOWLEDGEMENTS

First off, I would like to thank my advisor and mentor Mona Garvin for her

guidance in all of my research endeavours throughout my academic career. She has

consistently provided me guidance and insight throughout my journey here at the

University of Iowa. I would also like to thank all of my friends in the lab for creating

a wonderful work environment,and always keeping things fun and enjoyable. Shafkat,

Will, John, Yashila, Qingyang, Victor, Jason, and Caleb, you have all helped me keep

my sanity among many long days and nights of fixing bugs and sifting through data.

I would also like to give a special thank you to Ray, who, right from the moment I

joined the lab as an undergrad with no experience, took me under his wing and was

always willing to take time out of his day to answer any and all questions I had (with

extreme patience – even when I would lose mine). I would not have been able to

start, let alone finish, this journey without knowing that you would be there to help

me.

I would also like to thank Professors Baek and Jacob for serving on my thesis

committee, as well as the extra time they have both taken throughout my program to

answer my questions and provide suggestions and direction in my research endeavours.

Professor Baek, your enthusiasm and knowledge regarding deep learning was inspiring

and incredibly beneficial in the latter steps of this thesis work. I want to sincerely

thank you for the part you played in this work. Professor Jacob, the machine learning

theory you taught me is the foundation that all this work was laid upon, without it

I would have been flailing for much of my tenure here. This work was supported, in

part, by the following research grants: I01 RX001786, R01 EY023279.

Dina Blanc and Cathy Kern also need special recognition for helping to make sure

that all of the technical elements of my degree were in place and accounted for, as

well as helping to keep me sane when I would stop the ECE office to chat when I

needed a break from working. Dr.’s Kardon and Thurtell also have my appreciation

ii



www.manaraa.com

for all of the time that they have taken out of their normal schedules to review papers,

provide data details and diagnosis, as well as letting me attend meetings with their

staff. Without your help, our research would not have near the success or impact that

it does. You have both helped tremendously in all clinical aspects of our work. Shout

out to all of my Iowa City friends who have helped me maintain some semblance of a

social life, when possible. I am still not confident that our trivia skills have improved,

but the nights spent debating random questions have produced lifelong memories that

I will always cherish.

Finally, and most importantly, I want to acknowledge the unwavering support I’ve

received from my family. My parents, Elaine and Steve, my brother, Doug, and my

grandmother Marilyn Johnson have always provided tremendous encouragements in

all of my academic endeavours. You have always pushed me to do my best, consoled

me when things didn’t go well, and provided advice when needed. None of this would

have possible without you.

iii



www.manaraa.com

ABSTRACT

The optic nerve head is the location in the rear of the eye where the nerves

exit the eye towards the brain. Swelling of the optic nerve head (ONH) is most

accurately quantitatively assessed via volumetric measures using 3D spectral-domain

optical coherence tomography (SD-OCT). However, SD-OCT is not always available

as its use is primarily limited to specialized eye clinics rather than in primary care

or telemedical settings. Thus, there is still a need for severity assessment using more

widely available 2D fundus photographs.

In this work, we propose machine-learning methods to locally estimate the volu-

metric measurements (akin to those produced by 3D SD-OCT images) of the optic

disc swelling at each pixel location from only a 2D fundus photograph as the input.

For training purposes, a thickness map of the swelling (reflecting the distance between

the top and bottom surfaces of the ONH and surrounding retina) as measured from

SD-OCT at each pixel location was used as the ground truth. First, a random-forest

classifier was trained to output each thickness value from local fundus features per-

taining to textural and color information. Eighty-eight image pairs of ONH-centered

SD-OCT and registered fundus photographs from different subjects with optic disc

swelling were used for training and evaluating the model in a leave-one-subject-out

fashion.

Comparing the thickness map from the proposed method to the ground truth via

SD-OCT, a root-mean-square (RMS) error of 1.66 mm3 for the entire ONH region

was achieved, and Spearman’s correlation coefficient was R= 0.73. Regional volumes

for the nasal, temporal, inferior, superior, and peripapillary regions had RMS errors

of 0.64 mm3, 0.61 mm3, 0.74 mm3, 0.71 mm3, and 1.30 mm3, respectively, suggesting

that there is enough evidence in a singular color fundus photograph to estimate local

swelling information.

Because of the recent success of deep-learning methods in imaging domains, a

convolutional neural network was also trained using the same data as was used with
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the random forest classifier. Because training data is used to help fine tune model

parameters for deep learning, a subset of ten randomly selected patients was strictly

withheld from the training process to be used for testing. Comparing the prediction

results on the withheld data with the OCT ground truth, we achieved a root-mean-

square (RMS) error of 2.07 mm3 for the entire ONH region. Regional volumes for

the nasal, temporal, inferior, superior, and peripapillary regions had RMS errors of

0.75 mm3, 0.82 mm3, 0.85 mm3, 0.91 mm3, and 1.62 mm3, respectively. Although the

errors are slightly higher than those from the random forest model, the test dataset

was smaller as we could not use a leave-patient-out validation approach and this

may not be representative of the whole dataset since results were not averaged as

before. It is also known that deep learning models require larger training datasets to

achieve similar results to traditional machine-learning methods. For these reasons,

and the fact that the errors were close to those of traditional methods, we believe

deep learning approaches for estimating local retinal thickness in cases of optic disc

swelling still holds promise with larger datasets.

Both of the proposed approaches allow for clinicians to assess optic nerve edema

in both a qualitative and quantitative manner using strictly fundus photography.

The predictions allow for overall optic nerve head volume to be calculated as well as

regional and local volumes which was not possible before.

v
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PUBLIC ABSTRACT

The optic nerve head is the area in the rear portion of the eye where the optic

nerve departs the eye towards the brain. There are a number of known conditions

which can cause this region to swell, known as optic disc edema, which can potentially

result in uncomfortable symptoms for the patient such as headaches, nausea, and even

vision loss. For this reason, it is imperative to be able to diagnose and assess disease

severity and progression.

Current methods of assessing optic nerve edema are limited and often subjective or

expensive. One of the most prominent methods for assessment showing great promise

is optical coherence tomography (OCT), a non-invasive 3D imaging modality which

allows for a more quantitative evaluation. With the introduction of associate layer

segmentation methods for OCT, and especially segmentation for swollen cases, we are

able to calculate a total volume measurement for the swollen optic nerve head region.

This allows clinicians to assess severity on a continuous scale with little variability.

However, OCT technology is not available in many settings (e.g. telemedical) yet so

there still exists a need for this quantitative assessment from other methods.

Fundus photographs are standard two-dimensional color photographs of the back

of the eye and have traditionally been the medium used for clinician assessment of

many ophthalmic conditions. They are relatively low cost, readily available, and

require minimal discomfort from the patient. Using machine learning techniques,

fundus photography has been proven to contain enough information to predict the

swollen volume of the optic disc region.

In this thesis work, a method of predicting retinal thickness at each pixel location

in a fundus photograph is proposed. This will allow for calculation of not only the

total swollen volume across the optic nerve head, but also regional volumes (such as

strictly the temporal or nasal regions). It can also provide a thickness map for visual

qualitative analysis similar to those acquired via OCT.

Two algorithms were tested in this work: a random forest regression model as well
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as a convolutional neural network. Eighty-eight patients with both OCT and fundus

photographs taken at the same visit date were used for training and testing both

approaches. For the random forest approach we train as many models as there are

patients, leaving one out each time to be used for testing and then all model results

are averaged. For the neural network, we strictly withhold ten randomly selected

subjects for testing.

Comparing the prediction results from the random forest model on the withheld

data with the OCT ground truth we achieved a root-mean-square (RMS) error of 1.66

mm3 for the entire ONH region. Regional volumes for the nasal, temporal, inferior,

superior, and peripapillary regions had RMS errors of 0.64 mm3, 0.61 mm3, 0.74 mm3,

0.71 mm3, and 1.30 mm3, respectively. In the same analysis for the neural network,

a RMS error of 2.07 mm3 was obtained for the total ONH region. Regional volumes

for the nasal, temporal, inferior, superior, and peripapillary regions had RMS errors

of 0.75 mm3, 0.82 mm3, 0.85 mm3, 0.91 mm3, and 1.62 mm3, respectively

Although the neural network has a slightly higher error rate, it is known that it

requires much more training data for a neural network to reach the same accuracy

as a traditional machine learning algorithm such as random forest. These results are

very encouraging as a low cost alternative to OCT that still provides clinicians with

both a quantitative and qualitative analysis of optic disc edema.
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CHAPTER 1
INTRODUCTION

Swelling of the optic disc, often referred to as optic disc edema, is an ophthalmic

condition where the disc around which the optic nerve joins with the rear of the eye

appears enlarged and bloated [6]. Optic disc edema can be indicative of a number

of serious underlying conditions relating to retinal pathology. Many of these condi-

tions can have a variety of negative physical effects on the patient such as abnormal

headaches, nauseousness, and even permanent vision loss so it is crucial to acquire

an accurate diagnosis as early as possible [7].

Despite being the only nerve visible on the exterior of the human body, diagnos-

ing conditions of the optic disc is difficult for even expertly trained clinicians. One

common technique for assessing optic nerve edema is called the Frisén scale [8, 9].

This is a subjective, discrete scale from zero to five (zero being normal and five being

extremely severe swelling) used on optic disc edema diagnosed as papilledema, which

is any swelling of the optic disc due to raised intracranial pressure (ICP). A clinician

will either examine the back of the eye directly or, more commonly, will use a color

fundus photograph (i.e. a photo of the optic disc and surrounding area) to assess the

swelling. Because this scale relies upon a subjective and mostly qualitative assessment

by the clinician, there can be a high amount of inter/intra-observer variability [10].

Alternative assessment methods have emerged in recent years that allow for a

quantitative assessment. At the forefront of this is optical coherence tomography

(OCT) which is a 3D imaging modality using light waves to capture high resolution

images of the eye [11]. However, this technology is more resource intensive than

traditional methods of assessment using fundus photographs. It is also not widely

available in settings like family care facilities or telemedical applications. Clearly a

quantifiable, lower cost method of assessment via fundus photographs would provide

great value to both patients and clinicians alike.
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In response to this need, Echegaray et al. proposed a method of semi-automatically

predicting the Frisén grade given a color fundus photograph [12]. This approach

extracted a total of 24 features from the fundus photograph that attempted to mimic

clinical Frisén grading criteria, namely vessel, peripapillary, and ONH related features.

These features were then used in training a random forest classifier that would predict

the Frisén grade for that image. Although this was a step in the right direction for

automatic quantification of the optic disc edema, we are still constrained by the

inherent ordinal nature of the Frisén scale itself.

The introduction of OCT and associated retinal layer segmentation has allowed for

more precise quantification of the degree of optic disc swelling [11,13]. By segmenting

the different layers of the retina, we can calculate a volume measure for the swollen

area, referred to as the total retinal volume (TRV) [14]. This TRV is defined as

the sum of differences between the internal limiting membrane (ILM) and retinal

pigment epithelium (RPE) at each voxel location within a 6 × 6mm2 area, centered

around the ONH. It has been shown that there is a high correlation between the

TRV and the ordinal Frisén scale grades [14]. This new approach for assessing optic

disc swelling provides huge benefits when compared with the Frisén grading system,

namely that it is a continuous scale instead of discrete which removes subjectivity that

was introduced by a manual diagnosis from a clinician on a discrete scale. However,

assessing optic nerve edema using this approach requires that the patients have access

to expensive machinery capable of capturing these OCT images. As this equipment

is not available in many settings, such as emergency and primary care facilities, there

still exists a need to mimic the volumetric assessment of optic disc swelling provided

via OCT using more readily available fundus photography.

Previous works by Agne et al. [15] have sought to extend Echegary’s work into

the realm of this continuous scale of TRV. His approach uses more widely available

2D fundus photographs to predict the TRV. Twenty-seven features similar to those
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Echegary used were extracted from the fundus image and then used to train a ran-

dom forest regression model to predict the TRV for a fundus image. However, this

prediction is limited in that it only provides a single quantitative value to describe the

entire image. It cannot provide any qualitative anaylsis, nor can it describe regional

swelling severity which has been proven useful for differentiation of causes of optic

disc swelling [16].

In this work we propose machine learning methods to estimate local thickness

values at each pixel location in a color fundus photograph. These approaches allow

for both quantitative and qualitative analysis (thickness map) of the swelling, and

not only allows you to calculate the TRV but also regional volumes on the optic disc.

Regional volumes can help more accurately indicate disease progression and severity

as it has been shown that in some cases of optic nerve edema (e.g. papilledema)

swelling can start on the nasal side before progressing to the temporal side when the

swelling becomes more severe [16].

For this thesis, two separate methods were developed for achieving the above

stated goal: locally estimating retinal thickness for optic nerve edema assessment.

First, a random forest regression model using manually selected features akin to

those ophthalmologists look for was trained and analyzed. Second, a convolutional

neural network was trained using automatically extracted high level features and

again analyzed.

1.1 Main contributions

The main contributions of this thesis are two unique machine learning regression

models to predict retinal surface thickness at each pixel location in a color fundus pho-

tograph. A random forest ensemble where features are manually selected comprises

the first model, and a deep learning approach using high level features automatically

obtained is the second. Both approaches allow for qualitative and quantitative evalu-

ation of the severity of optic disc edema using only more widely available color fundus



www.manaraa.com

4

photography.

1.2 Thesis overview

The rest of this thesis is organized as follows.

• Chapter 2 provides a clinical background on optic disc edema and outlines rele-

vant prior technical work in the field of ophthalmic image analysis and thickness

prediction. It also discusses techinical backgrounds of both random forest and

neural networks.

• Chapter 3 discusses preprocessing steps, implementation methods and details,

and the resulting predictions made by the random forest regression model on

the fundus images.

• Chapter 4 presents a deep learning approach for predicting thickness across

the fundus using the same data as the random forest regression model.

• Chapter 5 offers closing remarks on the work presented here and describes

potential avenues for future work.
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CHAPTER 2
CLINICAL AND TECHNICAL BACKGROUND

2.1 Terminology

For convenience, acronyms that are used throughout this thesis are defined below:

• Optic nerve head (ONH): area, often referred to as a disc, where the optic nerve

exits the back of the eye towards the brain

• Intracranial pressure (ICP): the pressure within the skull, and therefore within

the brain tissue and cerebrospinal fluid

• Anterior ischemic optic neuropathy (AION): an ophthalmic condition involv-

ing interruption of blood flow to the anterior portion of the optic nerve, often

presenting with sudden loss of vision

• Retinal pigment epithelium (RPE): outermost surface of the retina, consisting

of multiple layers of pigmented hexagonal cells. Shown in green in Fig. 2.1.

• Internal limiting membrane (ILM): innermost surface of the retina which sepa-

rates the retina from the clear gel-like substance which fills the interior of the

eye, known as vitreous. Shown in red in Fig. 2.1.

• Cerebrospinal fluid (CSF): a clear fluid that is found within the brain.

• Convolutional Neural Network (CNN): a class of deep neural network, typically

applied for applications of analyzing visual imagery

• Contrast limited adaptive histogram equalization (CLAHE): a traditional image

processing technique used to improve contrast in images without over amplifying

noise in near constant regions

• Root-mean-square error (RMS): a common measurement of the difference be-

tween values from an estimator and observed values
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• Spectral-domain optical coherent tomography (SD-OCT, often referred to as

just OCT): an imaging modality that produces high resolution three-dimensional

images using low-coherence interferometry

• Total retinal volume (TRV): a common measurement of swollen optic discs,

calculated by the difference between the ILM and RPE surfaces across the

entire optic disc region

• Peripapillary regional volume (PRV): a common measurement of swollen optic

discs, calculated by the difference between the ILM and RPE surfaces across

only the peripapillary region (defined as the region inside a circle with radius

1.73 mm centered at the ONH)

Although the retina is made up of many different surfaces, for the purposes of

this thesis we will only be concerned with the ILM (innermost surface) and RPE

(outermost surface) as the thickness between them is what will be estimated. The

RPE is made up of multiple layers, but for the purposes of this work we will refer

strictly to the RPE as a single entity, though it is implied to mean the multi-layer

structure. Fig. 2.1 provides an overview of the structure of all layers in the retina as

well as their spatial relationship to the eye as a whole.

2.2 Optic disc swelling

The optic nerve head, also referred to as the optic disc, is the location in the

rear of the eye where the nerves exit the eye towards the brain. Swelling of the

optic disc can be caused by any one of a myriad of potentially serious underlying

conditions. These include, but are not limited to anterior ischemic optic neuropa-

thy (AION), papilledema, and pseudopapilledema. Despite presenting with slightly

different symptoms, all of the conditions discussed here can present with some form

of optic disc edema. Each of these conditions can also have lasting consequences if
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Figure 2.1: Layers of the retina. (a) The eye. (b) Diagram of the retinal layer cells.
(c) OCT view of the optic nerve head. Highlighted surfaces are the ILM (red) and
the RPE (green). (d) Light micrograph of the human retina. (Overall figure from
John W. Miller’s thesis [1], original panel images a, b, and d modified with permission
from Daniel Palanker [2].)
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not treated swiftly, so it is crucial to be able to diagnose and assess the severity and

progression of the disease.

AION is general neuropathy of the optic nerve caused by reduced blood flow

(i.e. ischemia) to the anterior region of the optic nerve [17]. In layman’s terms this

means that there is an impairment of blood circulation to the front of the optic nerve

without true inflammation of the arteries which can cause disruption of information

sent between the eye and the brain. AION can present in two different forms - arteric

and non-arteric. Of these two, the non-arteric class makes up a large majority of all

recorded cases - almost 95% [18]. Although studies have been performed, it is not yet

clear whether any known treatment is effective for NAION [19].

Papilledema is the presentation of optic disc swelling with the specific cause being

increased intracranial pressure (ICP) [6]. Because of the direct connection between

the brain and the the eye via the optic nerve, if pressure within the skull increases it

translate directly to the back of the eye as well [20]. Any disorder which can present

with raised ICP (e.g. brain tumor, restricted cerebrospinal fluid, head injury, etc.) can

also cause papilledema [21]. Due to this inherent nature a patient may have increased

ICP without swelling of the optic disc, but cannot have papilledema without the

presence of increased ICP. Because the underlying condition for papilledema must be

raised ICP, the definitive means for diagnosis is a lumbar puncture (i.e. spinal tap)

to measure CSF pressure. The threshold necessary to be classified as raised ICP is a

lumbar CSF opening pressure of 250mm of water [22]. Although this method is the

conclusive procedure necessary for diagnosis, it is expensive, time consuming, and

can be very uncomfortable for the patient.

Pseudopapilledema presents in a very familiar manner as papilledema, however

it is usually a benign condition [23]. Although many symptoms mimic those of tra-

ditional papilledema, it often presents with calcified deposits referred to as drusen

which can help differentiate it [24]. Another noticeable difference between pseu-
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dopapilledema and true papilledema is the shape of Bruch’s membrane. In true

papilledema raised ICP causes Bruch’s membrane to angle towards the vitreous (i.e.

the clear gel that fills the space between the retina and the lens of the eye), which

is visually apparent in OCT imagery. Because pseudopapilledema is a benign condi-

tion while true papilledema can have serious underlying causes, initial diagnosis and

assessment is paramount.

The data used for this thesis work is comprised primarily of papilledema patients,

however there is at least one example of each of the listed conditions.

2.3 Fundus photography and associated Frisén
grading scale

A monocular color fundus photograph is a standard two dimensional image of

the posterior region of the retina, usually focused on either the ONH or the macular

region of the selected eye. These images are traditionally used by various types of

clinicians in assessing many conditions with visible signs on the optic nerve, macula,

or any retinal vasculature. The advantages of this modality include quick acquisition

time, lack of patient discomfort, and accessibility in many care settings. An example

color fundus photograph is shown in Fig. 2.2 with the areas of interest marked.

The Frisén scale was first defined by Lars Frisén in 1982 as a consistent method for

grading swelling of the optic nerve head in cases of papilledema [8]. This approach

uses visually obvious features in a fundus photograph, such as optic disc border

obscuration and vessel tortuosity, to assign an ordinal and discrete grade between

zero and five to the given optic nerve head where zero is normal and five is extremely

swollen. Three example fundus images are shown in Fig. 2.3 with swelling ranging

from Frisén grade 0 (normal) where there is almost no visible swelling to Frisén grade

4 (very swollen) where there is a high degree of swelling and the optic disc is enlarged

and the borders are obscured.

Despite the proven effectiveness of this grading system, it has some very obvious
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Figure 2.2: An example fundus photograph centered and focused around the optic
nerve head with the ONH region and the macula region marked

Figure 2.3: Example fundus photographs with varying amounts of swelling. From
left to right the Frisén grades are 0, 2, and 4. Figure modified, with permission, from
Jason Agne’s dissertation [3].
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drawbacks [9, 10]. First, it is a discrete scale meaning that it cannot have a high

degree of precision. It also requires expert training which takes a large amount of

time and resources on the clinicians’ part. This also can lead to a high inter/intra

observer variability [10] since it is completely subjective to the current assessment

by the clinician. Lastly, it is limited by the fundus photograph’s quality because if

the image is unintentionally blurred in any way it can skew the grade assigned to

the patient. Because of all of these negative qualities, a more continuous and reliable

method is desired.

2.4 Optical coherence tomography

Optical coherence tomography is an imaging modality introduced by Huang et

al. in 1991 [11] that produces high resolution three-dimensional images using low-

coherence interferometry, i.e. emitting a broadband light spectrum into the eye and

then measuring its reflected response. Because only the emitted light interacts directly

with the patient, this is considered a non-invasive methodology.

Initial versions of OCT operated in the time domain, known as TD-OCT, and

were publicly available for first use in 2003. Refined versions of this technology were

later released in 2007 that worked in the spectral domain (SD-OCT) which allowed

for enhanced resolution as well as faster sampling times (implying less capture time,

and therefore less patient involvement). Since it’s release, SD-OCT has become the

gold standard for non-invasive imaging of the back of the eye (i.e. fundus). Imaging

methods used by OCT machines differ slightly for each manufacturer. All OCT images

used in this thesis work are SD-OCT images collected on a Cirrus OCT device from

Carl Zeiss Meditec, Inc. (Dublin, CA).

Although the above mentioned machines will do multiple different protocols, we

are going to focus strictly on the volumetric scans. Each individual SD-OCT image

cube is centered at the ONH region with 200 × 200 × 1024 voxels covering a physical

space of 6 × 6 × 2 mm3. Fig. 2.4 shows the relationship between the fundus region,
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(b)
(a)

(c) (d)

Figure 2.4: Physical relationships between the eye, ONH centered SD-OCT images
and fundus photography. (a) Diagram of the eye with OCT scan region highlighted
in blue and red, and the fundus photograph region marked in black (modified with
permission from Palanker [2]). (b) An example fundus photograph displaying both
the ONH and macular regions (c) Example SD-OCT B-scans with the x,y, and z
dimensions labeled with their sizes (d) 3D visualization by displaying two cross-section
B-scans perpendicularly ((c) and (d) modified with permission from [1])

a standard fundus photograph, and the orientation of the OCT scans.

2.5 Graph-based segmentation of retinal
surfaces and associated volumetric

measurements

Before we can predict retinal thickness across the fundus we must first define the

upper and lower boundaries of the retina. Shortly after the OCT imaging modality

emerged, so too did associated segmentation of the different surfaces visible within

these images. Initial graph-search algorithms used to performed surface segmentation

in 3D images were proposed by Li et al. [25] in 2006, shortly before SD-OCT became

available. This work was later adapted by Garvin et al. [26] for normal (i.e. non-

swollen) SD-OCT images. Wang et al. [14] went on to adapt these methods for use
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(a)

(b)

(c)

(d)

Figure 2.5: (a) An example SD-OCT B-scan. (b) An example of a OCT B-Scan
shown with the ILM (in red) and RPE (in yellow) segmented (c) An example 2D
thickness map generated from the surface segmentation shown in micrometers. (d)
3D surface rendering generated from the surface segmentation

on SD-OCT images with cases of optic disc swelling. Fig. 2.5 (b) demonstrates an

example segmentation of the uppermost (ILM) and lowermost (RPE) surfaces in SD-

OCT B-scan with optic disc swelling. The thickness we will be predicting as the main

goal in this work is the thickness, in micrometers, between the ILM and the RPE.

Using these SD-OCT images and associated segmentation, it is possible to calcu-

late a volume in the regions between surfaces. Figure 2.5 shows an example segmen-

tation on an SD-OCT image, a two dimensional thickness map, and the associated

three dimensional surface rendering. These generated thickness maps can be used to

calculate the overall volume between surface in the ONH region, often referred to as

total retinal volume (TRV). It is also possible to calculate specific regional volumes,

such as strictly the temporal or nasal quadrant of the ONH region. In cases of optic

disc swelling the TRV has shown high correlation with the Frisén grading scale [3],
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and the regional volumes have shown promise in assessing disease progression in cases

of papilledema [14].

As stated in Chapter 1, Echegaray proposed a semi-automated method of predict-

ing the Frisén grades using fundus photography [12], and Agne extended this work

by instead using a monocular fundus photograph to predict the TRV [3,15]. Tang et

al. [27] has also proven that sterescopic fundus photographs can be used to estimate

this volumetric measurement. However, all of these approaches are still limited in

that the resulting prediction is a singular number and cannot be used in a qualitative

fashion.

2.6 Random forest regression

Because the overarching goal of this thesis is to predict thickness at each pixel

location in an image, a machine learning method is desired for this estimation. Due

to the limited data available for this work, a random forest was chosen to avoid over-

fitting the data. Properly introduced by Breiman in 2001 [28], random forest is a

general term which can apply to either classification or regression models. For the

purposes of this thesis, we will only use regression applications, but all ideas are easily

transferable to classification [29]. Built upon the ensemble learning method known

as decision trees, random forests introduced noticeable improvements such as higher

accuracy and a lower sensitivity to noise than traditional decision trees.

Traditional decision trees work by by repeatedly separating data into two groups.

Each split in the data is known as a node in the tree. At each node in the tree, the

model identifies features on which to split the data into partitions that continually get

more homogeneous. A visualization of this process is shown in Fig. 2.6. The process

of training the model determines which features to select at each level in the tree as

well as what the threshold values to use for splitting the data. To determine both of

these items, a measure known as the Gini impurity index, I(t), is used to measure
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impurity of a dataset or subset [30,31]:

I(t) =
M∑

m=1

P (ωm|t)(1− P (ωm|t)) (2.1)

where P (ωm|t) is the probability of finding a point, ωm, from class m in a subset Xt

and M is the total number of classes. Xt is the current set of points at node t, before

the data are split into two purer subsets. The probability is approximated as

P (ωm|t) =
Nm

t

Nt

,m = 1, 2, . . . ,M

where Nm
t is the number of points from class m in a potential new subset XtY and

Nt is the complete number of points in Xt. The Gini impurity is maximized when

P (ωm|t) is constant. A tree is trained by selecting optimal features and thresholds

that minimizes the Gini impurity index, which results in a tree that is optimally split.

After looking at the theory behind decision trees, it is clear how this would apply to

classification, but maybe less so how it would apply to a regression problem where

our result needs to be on a continuous scale. Because the algorithm “bins” similar

data together, it can predict similar values for data with similar feature values even

on a continuous manner.

Decision trees maintain a few advantages over other historically successful ma-

chine learning models. The theory, as shown above, is simple and easily understood.

Inherently, it is also easy to implement and modify for both classification and regres-

sion [29]. However it also has a few drawbacks, namely that it can be sensitive to

small changes in training data and compared with methods such as support vector

machines it can have lower accuracy. Breiman’s random forest technique improves on

both of these problems.

Random forests improve upon traditional decision trees by using a bootstrapped

ensemble of decision trees as well as a random subset of features during the training
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Figure 2.6: An example visualization of the structure of a basic random forest with
only two trees [4]

process to produce high accuracy and a higher resistance to noise in the data. The

overall structure remains the same as in decision trees (shown in Fig. 2.6), but only a

randomly selected subset of features is considered at each node. Random forest also

often implement bagging, or bootstrap aggregating, to reduce variance in the final

model [28]. This is the practice of training multiple trees within a given data and

then averaging the results of the trees.

Random forest has proven success in many different applications [32], as well as

in ophthalmic image analysis. It has been used to generate cost images for layer

segmentation [33], predict the total retinal volume of swollen optic nerve heads from

fundus photographs [15], estimate papilledema severity using retinal regional volumes

and layer shapes [34], and more recently to differentiate between causes of optic disc

swelling using retinal layer shape features [1].
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Input layer Hidden layer 1 Hidden layer 2 Output layer

Figure 2.7: A connection diagram of neurons in a basic neural network with two
hidden layers

2.7 Convolutional neural networks and U-net

2.7.1 Basic theory and convolutional neural networks

Deep learning is a recently popularized type of machine learning that has shown

great promise in tasks such as natural language processing and medical image anal-

ysis [5, 35, 36]. At a very high level, deep learning involves artificial neural networks

that contain multiple hidden layers [37]. Artificial neural networks were inspired by

the neurological process of neurons transmitting information throughout the brain.

Each artificial neuron receives a signal (or multiple signals) from the previous layer,

performs some computation (often some type of filtering), and then passes the mod-

ified signal on to the next layer. Fig. 2.7 shows a very simple illustration of this

concept.

A specific deep learning framework, known as convolutional neural networks (CNN),
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have recently shown encouraging results when applied to image-based tasks for both

regression and classification [38]. CNN’s are deep networks that use stacks of learn-

able filters which can automatically learn features from within the training data. First

introduced by Lecun et al. [38] in 1998 and later modified by Krizhevsky et al. in

2012 [36], these networks specifically attempt to mimic the structure of the primary

visual cortex.

To provide a thorough analysis of the problem of predicting retinal thickness from

fundus images, we would be remiss if we did not attempt to use a CNN approach.

It should be noted however that that neural networks tend to use larger amounts of

training data to reach similar levels of accuracy as classical machine learning algo-

rithms [36].

2.7.2 Fully convolutional networks and U-net
architecture

Early versions of CNNs used a batch-based approach that forced the network to

run on each pixel, resulting in longer run times. A remedy approach was suggested

by Sermanet et al. [35] in 2013 called OverFeat. This involved replacing the fully

connected layers with convolution layers. However, this approach was still limited by

its output resolution which was significantly lower than the input resolution. Fully

convolutional neural networks [39] were developed based on this need to improve

output resolution. To increase the output resolution, deconvolution layers (which are

a transposed process of standard convolution) were added in the latter portion of

the network. These layers essentially perform up-sampling before the network output

allowing for increased precision in the output.

An extension on fully convolutional networks, known colloquially as U-net, was

specifically proposed for medical imaging tasks at the MICCAI conference in 2015 by

Ronneberger [5] with very promising results. A U-net is defined by its asymmetric

structure and by the up-sampling layers in the second half of the network that replace
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Figure 2.8: The original architecture of Ronneberger’s proposed U-net used for seg-
mentation [5]

the pooling layers in a standard CNN and help form the U-shape which gives the net-

work its name. Ronneberger’s initial proposed network architecture is shown in Fig.

2.8. The up-sampling layers enable the output to be a similar resolution to the in-

put image, which was an issue with previous architectures as standard convolutional

layers reduce resolution. The network only uses the valid part of each convolution

without any fully connected layers [39]. For predictions in the border regions of the

output image, the context that is missing is extrapolated directly from the original

image. This framework is ideal for many medical imaging tasks because of the preci-

sion allowed by the gained resolution, and has already shown merit in tasks involving

pixel-wise regression [40].
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CHAPTER 3
PREDICTING FUNDUS THICKNESS FROM 2D FUNDUS

PHOTOGRAPHY USING RANDOM FOREST REGRESSION

Note: A version of this work has previously been published and presented at the

MICCAI conference’s Ophthalmic Medical Image Analysis workshop in 2018 [41].

3.1 Motivation

For many years, color fundus photographs have been a common imaging modality

for ophthalmologists to examine the back of the eye in cases of optic disc swelling

[Fig. 3.1(a)] [42]. Traditionally, assessment of swelling via fundus photographs has

been a very challenging task due to the specialized expertise required and the inability

to compute volumetric measures of the swelling [9]. With the introduction of spectral-

domain optical coherence tomography (SD-OCT) [Fig. 3.1(b)] and development of

associated retinal-layer-segmentation algorithms [14,26] [Fig. 3.1(c)], SD-OCT-based

volumetric measures have recently shown great promise in overcoming many of the

limitations of a traditional fundus-based assessment.

However, SD-OCT is not always available as its use is primarily limited to special-

ized eye clinics rather than in primary care or telemedical settings. Thus, the need

for better approaches for the assessment of optic disc swelling via fundus photographs

alone still exists. In this area, Echegaray et al. [12] proposed a decision-tree system

that automatically grades/stages the optic disc swelling using image features directly

extracted from monocular fundus photographs. However, this approach only provides

ordinal severity grades rather than continuous volumetric measures. Tang et al. [27]

demonstrated that the stereoscopic color fundus photographs have the potential to

reconstruct the depth information and allow the volumetric estimation for the optic

disc swelling, but the requirement of carefully acquired stereo images rather than

monocular images limits its applicability. More recently, Agne et al. [15] proposed

a regression approach, which can directly estimate the total retinal volume (TRV)
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(a) (b) (c) (d)

Figure 3.1: (a) An example registered and cropped fundus photograph at the optic-
nerve-head (ONH) region with the nasal (N), temporal (T), superior (S), and inferior
(I) sides marked. (b) A 3D rendering of the corresponding OCT image depicting a
swollen optic disc. (c) A surface rendering of the internal limiting membrane (ILM)
shown in red and the retinal pigment epithelium complex (RPE) shown in blue. (d)
The ONH thickness map with a grid showing regional volumes (in mm3) displayed
within the grid, peripapillary volume (PRV), and total retinal volume (TRV) both
shown in the bottom left-hand corner (also in mm3).

at the optic-nerve-head (ONH) region by only inputting a single fundus photograph;

however this approach doesn’t predict local thickness values as may be needed to

compute regional volumes.

Thus, to overcome the limitations above, we propose a machine-learning method

that estimates the local volumetric information by only requiring a single monocular

color fundus photograph [Fig. 3.1(a)] as the input. The proposed method outputs a

thickness map with 200× 200 pixels covering 6× 6 mm2 at the ONH region. Based

on the resulting thickness map, the volumes of the peripapillary region, the nasal,

temporal, inferior, and superior quadrants, as well as the TRV can be computed

[shown in Fig. 3.1(d)]. Results are quantitatively assessed using the root-mean-square

errors between the model’s outputs and the OCT ground truths, as well as Spearman’s

rank correlation coefficients. Visualizations of the predicted thickness maps are also

provided for qualitative assessment.
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3.2 Methods

3.2.1 Overview

For the purpose of a fair comparison between the two image modalities, the

input fundus photographs were registered to the SD-OCT image domain and cen-

tered/cropped at the ONH [Fig. 3.1(a)]. Next, the blood vessels were inpainted and

the resulting fundus image had features pertaining to textural and color information

extracted. Based on these selected features, random forest classifiers, which will be

discussed more thoroughly in Section 3.3, were trained to estimate the depth infor-

mation of the retina at the pixel level and be able to output an ONH thickness map

that makes regional volumetric measurements computable [Fig. 3.1(d)].

3.2.2 Preprocessing

We first registered the input fundus photograph with the ONH-centered SD-OCT

en-face image. In particular, the SD-OCT images were segmented using 2D/3D

graph-theoretical algorithms [14, 26], and the en-face image was created by aver-

aging the pixel intensities along each A-scan within the retinal pigment epithe-

lium (RPE) complex. After that, we applied blood vessel inpainting on the ONH-

centered/registered fundus photograph [Fig. 3.2(a)] to suppress the negative effects

from blood vessels on the predicted thickness map. During the processes of ves-

sel inpainting, a blood vessel probability map was computed using a deep learning

based approach using U-Net [5] [Fig. 3.2(b)]. Then, this vessel probability map was

thresholded (p = 0.5) into a blood vessel mask. Next, a binary morphology dilation

(spherical filter size: r = 1 pixel) was used to ensure that the vessels were completely

encompassed by the mask. By overlapping the cropped fundus photograph with the

dilated blood vessel mask [Fig. 3.2(c)], a blood vessel inpainted image using second

order interpolation was created [Fig. 3.2(d)].
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(a) (b) (c) (d)

Figure 3.2: (a) An example cropped ONH-centered fundus image. (b) The corre-
sponding blood vessel probability map obtained from a deep-learning neural network.
(c) Overlapped dilated vessel mask on the cropped fundus photograph. (d) The blood
vessel inpainted image.

3.2.3 Feature extraction

In the processes of assessing optic disc swelling via fundus photographs, neuro-

ophthalmologists grade the swelling severity by inspecting key observable features on

the image. Similarly, in this work, several feature sets (categories include: image

intensity, color representations, gradient, and texture information) were extracted

from the inpainted image to help the proposed classifier to estimate the thickness

information at pixel-level; a total of 58 features were used as listed in Table 3.1.

To quantify the textural information, Gabor filters [43] are commonly used to an-

alyze image objects with specific combinations of frequencies, directions, and regions

of interest. Here, Gabor magnitude responses were computed at 0◦, 45◦, 90◦, and

135◦ with wavelengths of two and four pixels at each orientation [Fig. 3.3].

Textural features were also obtained via use of gray-level co-occurrence matrices

(GLCM) which involves statistically considering the spatial relationship of pixels [44].

The GLCMs were computed for each pixel in the inpainted image at an offset of one

pixel at the right using three different neighborhood sizes: 10 × 10, 15 × 15, and

20 × 20. For each GLCM, statistical properties, including variance, contrast, en-

tropy [Fig. 3.4(a)], homogeneity [Fig. 3.4(b)], and inertia, were used to create different

feature images.
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Table 3.1: Complete list of features for regression analysis.

Feature List
Number Description Number Description
1-5 GLCM Properties† (10×

10)
51 Green Channel

6-10 GLCM Properties† (15×
15)

52 Blue Channel

11-15 GLCM Properties† (20×
20)

53 Hue (HSV)

16-27 Entropy 54 Saturation (HSV)
28 Gradient Magnitude 55 Value (HSV)
29 Gradient Direction 56 Histogram Equalized

Image
30-49 Gabor Responses 57 Saturated Image
50 Red Channel 58 Grayscale Intensity

†
GLCM properties include: variance, contrast, entropy, homogeneity, and inertia

(a) (b) (c) (d)

Figure 3.3: Example Gabor responses with a wavelength of two pixels with directions
(a) 0◦, (b) 45◦, (c) 90◦, (d) 135◦.

(a) (b) (c) (d)

Figure 3.4: Example feature images. (a) GLCM entropy (15 × 15). (b) GLCM
homogeneity (15× 15). (c) Saturation image. (d) Histogram equalized fundus image.
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In addition, entropy can also be used to evaluate the image information in a par-

ticular region of interest. In this work, both small and large sliding window sets were

applied on the inpainted fundus photographs to compute image entropy in regions1.

For the smaller windows, these computed entropy values were interpreted as quanti-

tative indicators of the presence of homogeneous textures; for the larger windows, the

computed entropy values indicated the presence of heterogeneous textures. The image

gradient direction and magnitude were also included as features as well to enhance

the borders among the regions with texture and/or color changes. Along with the

red, green, and blue intensity values, the inpainted fundus image was also converted

to the hue-saturation-value (HSV) color space, and the separate channel values were

used as features as well. Differences in color contrast can be accentuated in the hue

and saturation [Fig. 3.4(c)] channels, which are highly indicative of texture since an

opaque texture is more associated with swelling. In addition, the histogram-equalized

image [Fig. 3.4(d)] as well as an intensity mapped image with the top and bottom

one percent of pixels saturated were used as features. Both images work to emphasize

contrast in color between regions of differing colors or differing intensities.

3.3 Experimental methods

A total of 88 subjects with optic disc swelling having both volumetric SD-OCT as

well as color fundus images were used for experimental analysis. The true thickness

information at the ONH (i.e., the ground truth) for each subject was calculated based

on the segmented internal limiting membrane (ILM) and the lower bounding surface

of the RPE complex in the SD-OCT image. With a total of 58 input features from

the input registered fundus image, a random forest bagged ensemble regression model

was trained using 500 learning cycles and feature importance was calculated as part

of the training process. To reduce computational complexity, the model was trained

1The small sliding window sizes include: 5× 5, 7× 7, 11× 11, 13× 13, 15× 15, 17× 17, 21× 21,
25× 25; the large sliding window sizes include: 37× 37, 49× 49, 73× 73, 101× 101
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on two and a half percent of the pixels in each image chosen randomly. Evaluation

was performed in a leave-one-subject-out approach so that the model for each subject

was obtained by training the classifier on the images from the remaining 87 subjects.

After predictions were made for individual pixel locations, volumes were calculated

for the peripapillary, nasal, temporal, inferior, and superior regions. The peripapillary

region was defined as the region inside a central circle with radius 1.73 mm. The nasal,

temporal, inferior, and superior regions were defined as the four interior quadrants

of the peripapillary circle using the 135◦ and 45◦ lines as boundaries. The overall

TRV was calculated as well. Errors and correlations were then calculated for each

individual region.

3.4 Results

When comparing the total retinal volume (TRV) calculated from the retinal thick-

ness predictions generated from the described model and the ground truth from OCT

images, a root-mean-square-error of 1.66 mm3 was achieved. Spearman’s correlation

coefficient was R = 0.73. When comparing regional volumes, the nasal, temporal,

inferior, superior, and peripapillary regions had root-mean-square-errors of 0.64 mm3,

0.61 mm3, 0.74 mm3, 0.71 mm3, and 1.30 mm3, respectively. The correlations (R)

were 0.71 (nasal), 0.72 (temporal), 0.61 (inferior), 0.65 (superior), and 0.75 (peripap-

illary). Examples of comparisons between the total retinal thickness maps from the

SD-OCTs (i.e, ground truths) and from the monocular fundus photographs are shown

in Fig. 3.5 and Fig. 3.6.

Average feature importance across all models was calculated by permuting the

features and looking for change in the model error. Top features were found to be

entropy in large neighborhoods as well as features that accentuate color change, such

as hue, saturation [Fig. 3.4(c)], or the histogram equalized image [Fig. 3.4(d)]. All fea-

tures that had distinctly different values for the optic disc compared to the peripheral

area were helpful in distinguishing swollen regions from non-swollen regions.
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3.5 Discussion

In this preliminary study, we have shown that the proposed method demonstrates

the monocular fundus photographs as a potentially lower cost but more available

alternative to the SD-OCT in the primary care or telemedical settings in cases of

assessment for optic disc swelling. Using features pertaining to textural and color

information obtained directly from the fundus photographs, akin to properties neuro-

ophthalmologists use, local thickness measurements can be estimated using a regres-

sion model trained on a variety of subjects with varying degrees of swelling. The

ability to assess depth information at the swollen regions can help clinicians identify

onset of diseases in earlier stages; for example, papilledema (a particular type of optic

disc swelling due to increased intracranial pressure) often presents with swelling in

the nasal quadrant relatively early [16]. In addition, the predicted thickness maps

provide a future opportunity to create 3D retinal shape models directly from the

2D monocular fundus photographs. The retinal shape information is hypothetically

helpful for distinguishing the different causes of the optic disc swelling.

The limitations of this work may include: 1) the lack of subjects with severe

optic disc swelling causes the trained classifiers to slightly underestimate the retinal

thickness at the extremely swollen regions, and 2) the thickness predictions at the

regions with imperfect vessel inpainting are less accurate due to the inconsistent tex-

ture information between the swollen retinal tissue and the vessel residual. Potential

future work can involve collecting more SD-OCT and fundus image pairs with various

severity of optic disc swelling or creating 3D retinal shape models directly from the

2D fundus photographs to help identify causes of optic disc swelling.
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Figure 3.5: Input cropped and registered fundus photographs with their accompa-
nying thickness maps generated by SD-OCT (used as the ground truth) as well as
the predicted thickness maps generated by the model with regional volumes shown
in the grid, and peripapillary plus total volumes shown in the lower left hand corner
(in mm3) shown in order of increasing swelling. Each column represents a different
subject.
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Figure 3.6: Input cropped and registered fundus photographs with their accompa-
nying thickness maps generated by SD-OCT (used as the ground truth) as well as
the predicted thickness maps generated by the model with regional volumes shown
in the grid, and peripapillary plus total volumes shown in the lower left hand corner
(in mm3) shown in order of increasing swelling. Each column represents a different
subject.
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CHAPTER 4
A DEEP LEARNING APPROACH FOR RETINAL THICKNESS

ESTIMATION USING FUNDUS PHOTOGRAPHY

Note: A version of this work has been accepted for presentation at the ARVO

conference in 2019 [45].

4.1 Motivation

Deep learning, or more technically artificial neural networks with multiple hidden

layers, have shown great promise in tasks involving visual imagery. More specifically,

convolutional neural networks (CNNs) have been proven successful for a variety of

tasks in the medical imaging domain [46]. Image classification, segmentation, regis-

tration, and detection are just a few of the many applications which have had positive

results after applying CNNs [35,46].

As particularly relevant to this thesis, CNNs have shown promise with the use

of fundus photography applications [47]. It has been shown that CNNs can, with

a relatively high degree of accuracy, predict diagnoses such as diabetic retinopathy,

macular edema, and even predict the location of retinal vessel structures [47]. It is

worth noting however, that to get results of this magnitude a very large amount of

data is needed to train these complex mathematical algorithms.

4.2 Implementation

4.2.1 Preprocessing

As a form of basic data augmentation, for each image there was a 50% chance

that we flip the image across the Y axis (a right to left flip). Because all of the

images used in this work are right eyes, this gives approximately half of our dataset

the orientation of left eyes. This allows our model to be trained on more robust data,

as it will have seen both right and left eye orientations.

Because fundus photographs are usually focused in a single area (typically the

macula or ONH), it is possible to get a partially unfocused image in some areas
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causing small, but important, image features to be blurred or dark. To help remedy

this we perform contrast limited adaptive histogram equalization (CLAHE) on the

cropped and registered fundus images. An example original and equalized image are

shown in Fig. 4.1. CLAHE has been proven to help enhance key image features in

medical images [48].

It is also known that deep learning requires more training data than traditional

machine learning algorithms [36], so we will take some additional preprocessing steps

so that we have a maximal number of training instances. More specifically we break

our cropped and registered fundus images that are 200 × 200 and break them up into

25 separate sub-images, each with size 40 × 40. An example is shown in Fig. 4.2.

Once the original images have been preprocessed using the steps described above,

we finally normalize the pixel values from zero to one. For purposes of training,

we also transform the ground truth OCT thickness maps from physical dimensions

(micrometers) to a normalized scale of, again, zero to one by mapping the maximum

physical thickness in the dataset to one and them minimum to zero (although this

was already the minimum). Once the model has made its predictions, we transform

the predictions back to physical space.

4.2.2 Network architecture

The network chosen for this application is a well known network architecture orig-

inally proposed by Ronneburger at MICCAI in 2015 [5] and shown in Fig. 2.8. The

U-Net consisted of a total of 15 neural layers, 13 convolution layers, and two max-

pooling layers. The neural network was designed to obtain image features in different

resolutions by passing the input image through a contracting path (i.e. the first half

of the network; repeatedly using the combination of the convolutional layers, expo-

nential linear units (ELU), and a max-pooling layer) followed by an “up-sampling”

path (i.e. the second half of the network; repeatedly using the combination of the

convolutional layers, ELU, and up-convolutional layers). In the up-sampling path,
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(a) (b)

Figure 4.1: (a) Original cropped and registered fundus photograph. (b) Contrast
Limited Adaptive Histogram Equalized fundus photograph

the “up-convolutional” layers are applied to double the dimensions of the feature

map, and then the outputting feature maps are concatenated with the ones in the

contracting path to reconsider past features and help fill in missing context in the

prediction with information from the original image. It was also necessary to change

the activation function in the final convolutional layer to a linear activation function

since this is a regression problem instead of the original classification task.

4.2.3 Experimental methods

The same data set as used for the experimental analysis in chapter 3 was used for

this analysis consisting of 88 subjects with optic disc swelling having both volumetric

SD-OCT as well as color fundus images were used for experimental analysis. However,

because deep learning algorithms use the training data to help tune the network, it

is not a fair analysis of those subjects are also used for evaluating the network. So

for the purposes of testing, ten randomly selected subjects were strictly withheld to

be used as a test set. The remaining 78 images were split into a training set (70) and

a validation set (8). The network was then trained using the training and validation
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Figure 4.2: CLAHE cropped fundus image shown on the left, and the same image
split into 25 equal sub-images to be used for training

sets using a learning rate of 10−3 for 500 epochs with a batch size of 8 images.

The ground truth thickness information around the ONH region for each subject was

again calculated using the segmented internal limiting membrane (ILM) and the lower

bounding surface of the RPE complex in the SD-OCT image. After predictions were

made for individual pixel locations in the ten withheld images, volumes were again

calculated for the peripapillary, nasal, temporal, inferior, and superior regions. As

stated in section 3.3, the peripapillary region was defined as the region inside a central

circle with radius 1.73 mm. The nasal, temporal, inferior, and superior regions are

defined as the four interior quadrants of the peripapilary circle using the 135◦ and

45◦ lines as boundaries. A map image is shown in Fig. 4.4 The overall TRV and

PRV were calculated as well. Errors and correlations were then calculated for each

individual region.

4.3 Results

Model predictions on the test images were compared with OCT-derived volumetric

measures: total retinal volume as well as regional volumes were calculated. For total
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retinal volume, a root-mean-square-error (RMSE) of 2.07 mm3 was achieved. When

comparing regional volumes, the nasal, temporal, inferior, superior, and peripapillary

regions had RMSE’s of 0.75 mm3, 0.82 mm3, 0.85 mm3, 0.91 mm3, and 1.62 mm3

respectively. Examples of three different patients with input fundus photographs, the

model predictions, as well as the OCT ground truth thickness maps are shown in Fig.

4.3. As you can see from the predictions, both quantitative measures (in the form

of total retinal volume and regional volumes) and qualitative measures (overall color

thickness map) are available.

4.4 Discussion

Although the quantitative results from our deep learning are slightly more error-

prone than those shown by its random forest counterpart, it is not completely accurate

to say that the model performed worse. Because we evaluated the random forest

model using a leave-one-patient-out approach and the deep learning method with a

strictly withheld randomly selected subset the results cannot be directly compared.

Because there was a test set withheld from the deep learning model, this meant that

there was actually less data to be used for training the model itself - only 78 images

(70 training, 8 validation) to be exact compared with the full 88 used for the random

forest.
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Input InputInput

Predicted PredictedPredicted

OCT OCTOCT

Figure 4.3: Top: Input 200x200 ONH region fundus photographs. Middle: The
predicted thickness map for the above fundus image. Local predictions are shown in
micrometers. Bottom: OCT reference standard thickness map. All volumes shown
are in mm3. PRV (peripapillary regional volume) refers to the cumulative volume of
all 4 quadrants in the peripapillary circle.
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I

ONH Region (TRV)

Map Image

Figure 4.4: Map image displaying the reference regions of the ONH area. S refers to
the superior quadrant, I the inferior quadrant, T the temporal quadrant, N the nasal
quadrant, peripapillary refers to the cumulative area of all 4 quadrants, and TRV
refers to the entire image area.
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CHAPTER 5
DISCUSSION AND FUTURE WORK

5.1 Discussion

This thesis work focuses on instituting machine learning methods which allow for

accurate evaluation of optic disc edema in a manner similar to those used in OCT

imagery, but instead using more readily available color fundus photography.

Although the algorithms used in this thesis work (random forest regression en-

semble, CNN, U-Net) are not proposed for the first time, the application on which

they are applied in this work is completely new. Never before have machine learning

methods been applied for retinal thickness estimation on a pixel-by-pixel basis in the

context of optic disc edema.

The proposed approaches have clear merit in the area of low cost assessment, as

well as applications such as telemedicine where the clinician may only have access

to fundus photography. Although these approaches only produce predictions and

would not be used as a gold standard assessment, they could provide a highly desired

instrument in a clinician’s arsenal of diagnostic tools to help evaluate (both qualita-

tively and quantitatively) and assess the severity of optic disc edema in patients using

relatively low cost and widely available fundus photographs.

The most obvious limitation of this work is the limited amount of data available

for training and evaluation of both proposed methods. As more data is becomes

available and more is learned about textural and depth information contained in two

dimensional photographs, the accuracy of predictions of retinal layer thickness will

improve and will enable clinicians to rapidly and reliably assess severity of optic disc

edema using strictly fundus photography. Also due to the clear risk for overfitting

on a small dataset, there was a very finite amount of hyper-parameter tuning that

could be done for each model (e.g. learning rate, number of trees, etc.). Additionally,

because of our limited evaluation methods (leave-one-patient-out cross validation for
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random forest and a randomly selected strictly withheld subset for deep learning), it

is difficult to fairly evaluate the models side-by-side.

Speaking just about the random forest regression model, another limitation is the

selection and knowledge of relevant features for the model to train on. Model results

are completely based on manual feature selection which requires expert knowledge

about three dimensional contextual information contained in a two dimensional image.

This limitation is overcome by using a method that automatically selects features

from the data, such as a deep learning approach, but as stated before these approaches

typically require more training data to learn those features. They also potentially

introduce a new limitation in the form of necessary hardware. Typically a high-

powered and expensive GPU is needed for these types of algorithms since they perform

many floating point calculations.

5.2 Conclusions and future work

The main contribution of this thesis is the innovative application of machine learn-

ing methods for assessing the severity, in both a qualitative and quantitative manner,

of optic disc edema. In Chapter 3 we presented a traditional machine learning ap-

proach in the form of a random forest ensemble regression model to estimate thick-

ness between retinal layers which was published as a conference paper in the MICCAI

conference’s Ophthalmic Medical Image Analysis workshop [41] in 2018 and was also

given as an oral presentation. For comparison, and due to its recent success in both

image classification and medical image analysis, a deep learning method was imple-

mented on the same data used for the random forest, which is described in Chapter

4 and was accepted as a conference abstract at the ARVO conference in 2019 [45].

Both methods show considerable promise in predicting local and global volumetric

measurements akin to those procured from OCT imagery.

Future avenues for extending this work could include analysis of additional textu-

ral and depth-related features from two dimensional images. Regional volume predic-
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tions could also potentially be used as differentiating features between causes of optic

disc swelling. It is also possible that with a different neural network architecture or

more data augmentation strategies, less training data would be needed to achieve sim-

ilar results as those shown with traditional machine learning methods. Irregardless

of which method is used, more data will allow future analysis to become even more

robust and accurate for qualitatively and quantitatively assessing optic disc edema

via fundus photography.
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